14 research outputs found

    Global burden of disease due to smokeless tobacco consumption in adults : analysis of data from 113 countries

    Get PDF
    BACKGROUND: Smokeless tobacco is consumed in most countries in the world. In view of its widespread use and increasing awareness of the associated risks, there is a need for a detailed assessment of its impact on health. We present the first global estimates of the burden of disease due to consumption of smokeless tobacco by adults. METHODS: The burden attributable to smokeless tobacco use in adults was estimated as a proportion of the disability-adjusted life-years (DALYs) lost and deaths reported in the 2010 Global Burden of Disease study. We used the comparative risk assessment method, which evaluates changes in population health that result from modifying a population's exposure to a risk factor. Population exposure was extrapolated from country-specific prevalence of smokeless tobacco consumption, and changes in population health were estimated using disease-specific risk estimates (relative risks/odds ratios) associated with it. Country-specific prevalence estimates were obtained through systematically searching for all relevant studies. Disease-specific risks were estimated by conducting systematic reviews and meta-analyses based on epidemiological studies. RESULTS: We found adult smokeless tobacco consumption figures for 115 countries and estimated burden of disease figures for 113 of these countries. Our estimates indicate that in 2010, smokeless tobacco use led to 1.7 million DALYs lost and 62,283 deaths due to cancers of mouth, pharynx and oesophagus and, based on data from the benchmark 52 country INTERHEART study, 4.7 million DALYs lost and 204,309 deaths from ischaemic heart disease. Over 85 % of this burden was in South-East Asia. CONCLUSIONS: Smokeless tobacco results in considerable, potentially preventable, global morbidity and mortality from cancer; estimates in relation to ischaemic heart disease need to be interpreted with more caution, but nonetheless suggest that the likely burden of disease is also substantial. The World Health Organization needs to consider incorporating regulation of smokeless tobacco into its Framework Convention for Tobacco Control

    Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis

    Get PDF
    Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions

    Design, synthesis, And applications of galectin modulators in human health

    No full text
    Over the last decade, the family of galectin proteins has been identified as key regulators of important biological processes. They bind β-D-galactopyranoside residues in glycoconjugates, and by presenting multiple binding sites, within one galectin or by forming dimers or multimers, they can cross-link glycoproteins and form galectin-glycoprotein lattices. Such lattices formed on the cell surface or in vesicles have been shown to control, for example, surface residence time and signaling by receptors. Hence, compounds modulating galectin binding to their glycoprotein ligands are of potential clinical interest. This chapter describes the design and development of disubstituted thiodigalactoside derivatives that form optimal interactions with the galectin-3 binding site resulting in double-digit nanomolar affinities. Studies are discussed in which such galectin-3-modulating compounds have been important in elucidating galectin-3 mechanisms, including galectin-3 trafficking, cancer, inflammation, fibrosis, and angiogenesis. Medically relevant models using the galectin-3 modulators in characterizing macrophage alternative activation and chronic inflammation, myofibroblast activation and fibrosis, and ocular angiogenesis are discussed in more detail. In summary, the high galectin-3 affinity and definitive effects in relevant models of the disubstituted thiodigalactosides identify them as promising as lead compounds for drug development, albeit leaving a challenge in terms of optimizing PK/ADME properties

    Role of cardiac vagal c-fibers in cardiovascular control

    No full text
    corecore